High temperature sensitivity is intrinsic to voltage-gated potassium channels
نویسندگان
چکیده
Temperature-sensitive transient receptor potential (TRP) ion channels are members of the large tetrameric cation channels superfamily but are considered to be uniquely sensitive to heat, which has been presumed to be due to the existence of an unidentified temperature-sensing domain. Here we report that the homologous voltage-gated potassium (Kv) channels also exhibit high temperature sensitivity comparable to that of TRPV1, which is detectable under specific conditions when the voltage sensor is functionally decoupled from the activation gate through either intrinsic mechanisms or mutations. Interestingly, mutations could tune Shaker channel to be either heat-activated or heat-deactivated. Therefore, high temperature sensitivity is intrinsic to both TRP and Kv channels. Our findings suggest important physiological roles of heat-induced variation in Kv channel activities. Mechanistically our findings indicate that temperature-sensing TRP channels may not contain a specialized heat-sensor domain; instead, non-obligatory allosteric gating permits the intrinsic heat sensitivity to drive channel activation, allowing temperature-sensitive TRP channels to function as polymodal nociceptors.
منابع مشابه
Design of Novel Drugs (P3TZ, H2P3TZ, M2P3TZ, H4P3TZ and M4P3TZ) Based on Zonisamide for Autism Treatment by Binding to Potassium Voltage-gated Channel Subfamily D Member 2 (Kv4.2)
The present research article relates to the discovery of the novel drugs based on Zonisamide to treatment of autism disease. In first step, the electronic properties, reactivity and stability of the said compound are discussed. To attain these properties, the said molecular structure is optimized using B3LYP/6-311++G(d,p) level of theory at room temperature. The frontier molecular orbitals (FMO...
متن کاملEngineering light-gated ion channels.
Ion channels are gated by a variety of stimuli, including ligands, voltage, membrane tension, temperature, and even light. Natural gates can be altered and augmented using synthetic chemistry and molecular biology to develop channels with completely new functional properties. Light-sensitive channels are particularly attractive because optical manipulation offers a high degree of spatial and te...
متن کاملDifferential effect of brief electrical stimulation on voltage-gated potassium channels.
Electrical stimulation of neuronal tissue is a promising strategy to treat a variety of neurological disorders. The mechanism of neuronal activation by external electrical stimulation is governed by voltage-gated ion channels. This stimulus, typically brief in nature, leads to membrane potential depolarization, which increases ion flow across the membrane by increasing the open probability of t...
متن کاملTREKing noxious thermosensation
The ability to sense environmental temperature as pleasant or unpleasant is associated with the activity of thermo-sensitive neurons in the peripheral nervous system. Differential sensation of pleasant environmental temperatures (warm and cool) versus unpleasant and noxious (cold and hot) temperatures requires the definition of thresholds and temperature ranges for activating thermonociceptors....
متن کاملPharmacological Conversion of a Cardiac Inward Rectifier into an Outward Rectifier Potassium Channel.
Potassium (K(+)) channels are crucial for determining the shape, duration, and frequency of action-potential firing in excitable cells. Broadly speaking, K(+) channels can be classified based on whether their macroscopic current outwardly or inwardly rectifies, whereby rectification refers to a change in conductance with voltage. Outwardly rectifying K(+) channels conduct greater current at dep...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2014